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imately in a constant ratio. This can most simply be 
explained by  the assumption of a difference in inclina- 
tion of the chains along the edges of the concave angle; 
in this case formula 3-2.2-(4) applies. 

l ' ~ t a t  Solide) supported by  I . R . S . I . A .  (Insti tut  
pour l 'encouragement de la Recherche Scientifique 
dans l ' Industrie et l 'Agriculture). 

3.6. Discussion 

I t  is evident tha t  the mechanism here proposed for 
polysynthetic twinning is in fact equivalent to the one 
for poly~ypism. I t  would as a consequence be justified, 
in a certain sense, to call the crystal of Fig. 5(a) a 
polytype.  For  the  fl-form of the n-alcohols the relation 
between twinning and polytypism (Part  I) is even 
more stril~ing: twin formation as well as polytypism 
are both direct consequences of the different stacking 
possibilities of successive bimolecular layers. 

The author  is grateful to Prof. W. Dekeyser for the 
stimulating interest taken in this work, which is 
par t  of a research programme (Centre pour l 'dtude de 
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In Part  1 it was stated that  the only three-dimensional 3-connected nets of the n S type a r e  8 3, 9 3 
and 10 3, and that  there are two different nets corresponding to the symbol 8 3 and similarly for 10 3. 
I t  is now shown that  there are also nets 7 3, as well as further nets 8 3, 9 3 and 10 3. These new nets are 
derived in a systematic way and illustrated. 

T h r e e - d i m e n s i o n a l  3 -connected  nets  related to 
the regular  so l ids  

Par t  1 (Wells, 1954a) dealt with the systematic 
derivation of periodic three-dimensional 3-connected 
nets containing 4 or 6 points in the repeat unit. I t  was 
noted tha t  certain of these nets are related to the three 
regular solids which have three edges (faces) meeting 
at  each vertex. The symbols 33 (tetrahedron), 43 
(cube), and 53 (pentagonal dodecahedron) indicate 
tha t  three 3-gons, 4-gons, or 5-gons respectively meet 
at  each vertex. The next  number of this n a series is 
the plane hexagonal net  (63), and it  was remarked 
tha t  the series is continued by the three-dimensional 
nets 83, 93 and 10 a. Some of these were described and 
illustrated in Par t  1, where it was stated:  ' I t  would 
seem, though this point has not been proved, tha t  the 
only nets of the n S type  are 83, 9 a and 10 S, and tha t  
there are two different nets corresponding to the 
symbol 83, and similarly for 103'. The purpose of the 
present paper is to show that ,  in fact, there are also 

nets 73, as well as further  nets 83, 9 S and 103, so tha t  
the series is complete from 33 to 103 . 

We shall require (1) tha t  each point is connected to 
three others, and (2) tha t  there must  be a configura- 
tion of each net  in which the distance between any 
pair of unconnected points is greater than the distance 
between any pair of connected points. Since we are 
interested in the three-dimensional 'homologues' of the 
3-connected regular solids we shall also insist (3) tha t  
there must  be a possible configuration of a net  having 
all links equal in length. (This condition was not ex- 
plicitly laid down in Par t  1; i t  is related to (2) above, 
and it is possible tha t  it has been implicitly assumed 
in Par ts  1 and 2.) 

In  the systems 33, 43 and 5 z, and the strictly planar 
regular form of 68 , i t  is sufficient to describe the 
polygons as equilateral or equiangular, since a regular 
plane polygon has both these properties, and all the 
polygons in a given system are congruent. In  the three- 
dimensional nets we shall consider here the polygons 
are not plane, and it is possible to have configurations 
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Figure n a 

3(a) ; 4(a) 103 
2(a); 5(a), (c) 103 
3(b) S a 
3(c) S 3 

2@ 8 3 

4(5); 5(5), (d) 10 a 

6(a) 73 
6(d) 7 a 
6(b) 8 a 
6(e) 83 

5(f) 9 a 

7(c) 93 
6(c) 108 

Table 1. Three-dimensional 3-connected n 3 nets 

All points All n-gons All interbond 
equivalent congruent angles 120 ° 

* * * 

M 

M 

m R 

I l lustrat ion 

Par t  1, Fig. 7 (Net 1) 
Par t  1, Fig. 8 (Net 2) 
Par t  1, Fig. 9 (Net 5) 
Par t  1, Fig. 10 (Net 6) 

Fig. S(a) 

Fig. 8(b) 

Fig. 8(c) 
Not  illustrated 
Not  illustrated 
Fig. S(d) 

Par t  1, Figs. 18 and 19 

Fig. 8(e) 
Fig. 8(f) 

Figure n 3 

3(a); 4(a) 103 
2(a) 103 

3(b) 83 

3(c) 83 

2(0) 8 a 

Table 2. Details o f  the f ive  most symmetrical n a nets 

Symmetry  Space group Equivalent  position 

Cubic 1413 8(a) 
Tetragonal I41/amd 8(e) 

Rhombohedral  R3m 6(f) 

Hexagonal  P6~22 6(i) 

Hexagonal P6a/mme 2(c) + 6(h) 

Conditions 

c/a = 21/3; z = 1112 

c/a = V6/5; x =-2]5 
(for 18(f) in hexagonal cell) 

c/a = 3l/2/5; x = 2]5 

v]a ~ 2/5; w ~ 7115 

of a particular n-gon which are both equilateral and 
equiangular but  not congruent (compare the 'chair' 
and 'boat '  forms of cyclohexane). We may therefore 
expect to find three-dimensional nets in which the 
polygons, in addition to being equilateral, are either 
equiangular or congruent, or both equiangular and 
congruent. A further complication is the possibility 
tha t  the polygons in a particular net are not congruent 
but  enantiomorphic. When classifying the n 3 nets we 
shall for simplicity group together congruency and 
enantiomorphism. Finally, the points in each of 3 3, 4 3, 
5 z and 6 a are all equivalent, being related by the sym- 
metry  elements of a point group or plane group. We 
shall find tha t  the points of some of the three-dimen- 
sional nets are equivalent, i.e. the net is formed by 
connecting up one set of equivalent points of a par- 
tieular space-group, whereas this is not so for other 
n 3 nets. 

The most symmetrical three-dimensional n 3 nets 
we could hope to find would have an equilateral con- 
figuration in which 

(a) all points are equivalent, 
(b) all n-gons are congruent, 
(c) the arrangement of links at  each point is the 

most symmetrical possible, i.e. inter-bond angles 
of 120 ° . 

I t  appears tha t  only four nets satisfy all these con. 
ditions, namely, the 103 Nets 1 and 2 and the 83 Nets 

5 and 6 of Par t  1. One net has been found satisfying 
(b) and (c), and others satisfying only one of the con- 
ditions (a), (b) or (c). I t  is probable tha t  the enumera- 
tion of nets n 3 in these groups is complete but  this is 
not  certain for the less 'regular'  nets which do not 
satisfy any of the above conditions. The thirteen n 3 
nets derived in this paper are listed in Table 1 and 
geometrical data  for the first five are given in Table 2. 

I t  seems fairly certain tha t  the value of n in n 3 nets 
cannot exceed 10, though this point still awaits proof. 
The peculiar uncertainty as to the numbers of nets 
of the various types (and as to the maximum value 
of n) arises because there are no equations for three- 
dimensional nets comparable with the very simple 
equations for plane nets which relate to the propor- 
tions of polygons of different kinds. This may  be com- 
pared with the fact tha t  an infinite array n~  of points 
on a plane may  be joined up to form 2n~ triangles 
whereas there is no corresponding expression for the 
number of tetrahedra formed from an infinite three- 
dimensional array of points (Laves, 1931). 

T h e  d e r i v a t i o n  of  n 3 n e t s  

In  Par t  1 periodic three-dimensional 3-connected nets 
were derived by introducing 2-connected points on the 
]inks of two-dimensional 3-connected nets and joining 
up the layers through these points which thereby 
become 3-connected. Here it  will be convenient to 
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adopt a different procedure since we are interested 
only in nets of a particular type (n 3) and not in nets 
containing assortments of polygons of many different 
kinds. 

There are three regular two-dimensional nets, each 
having all points connected to the same number of 
others and having all polygons with the same number 
of sides (Fig. l(a)-(c)). An operation involving trans- 

(a) 6 ~ (b) 4 4 (c) 3 6 

(d) (e) (f) (g) 

0½ 

(h) 

Fig. 1. 

lation perpendicular to the plane of the net  may  be 
introduced at  some or all of the points of such a net. 
The operation used in crystallography is the screw 
axis nm, and we shall indicate the heights of points as 
multiples of c/n where c is the repeat distance along the 
screw axis, as at  (d) for 31. I t  is found tha t  the only 
screw axes leading to 3-connected nets are 31 (or 3,), 
41 (or 43), 61 (or 65) and 69 (64). (The axes 42 and 63 
give 5-connected nets.) I t  is, of course, necessary to 
consider combinations of left- and right-handed screw 
axes. 

Instead of the screw axis 41 we could use the opera- 
tion shown in Fig. l(e), which may be written 412 , 
and in addition to the normal sixfold screw axes there 

are operations of a similar kind, of which the simplest 
are the enantiomorphic pairs 613 (and 653 ) and 6144 
(and 6522)--see Fig. l ( f )  and (g). These operations are 
mentioned because one particular n 3 net (Fig. 5(f)), 
which was derived in Par t  1 by joining up layers, 
does not appear to arise in the systematic t rea tment  
based on screw axes. I t  does, however, arise if the 
operation 412 is used, as shown later. 

Instead of introducing screw axes at  the points of 
the plane nets we may introduce 21 axes perpendicular 
to the plane of the net  and passing through the mid- 
points of some or all of the links, as shown in plan and 
elevation in Fig. l(h). The resulting three-dimensional 
net then contains the points of the original plane net, 
and therefore only 63 gives 3-connected three-dimen- 
sional nets when treated in this way. We may, however, 
introduce 21 axes in this way along the links of 44 or 36 
in addition to 41 or 61 axes at  the points of the net. 

21 axes only 
The plane 68 net arises by  joining up sets of points 

generated by parallel 21 axes (Fig. 2(a)). Three-dimen- 
sional nets are formed if 21 axes are introduced at  the 
mid-points of some or all of the links of 63 , the direc- 
tion of translation of the axis being perpendicular to 
the plane of the net. Of the three possibilities shown in 
Fig. 2 only (a) and (c) lead to n 8 nets. The net (a) is 
a system of 10-gons and is Net 2 of Figs. 6 and 8 of 
Par t  1. (The net (b) consists of points 82.10 and 8.10%) 
The net (c)is i l lustrated in Fig. 8(a).* Both the nets 
(a) and (c) have in their most symmetrical configura- 
tions congruent, equiangular, polygons, and may  be 
built with inter-bond angles of 120 °. The net (a) is 
one of the two simplest three-dimensional 3-connected 
nets, having only 4 points in the simplest unit cell. 
(The data  in Table 2 refer to the most symmetrical 
configuration of the net.) 

31 axes and the plane net 63 

The simplest nets arise by erecting 31 axes at  either 
one-half or all of the points (Fig. 3). In  projection, 
the points generated by the 31 axes appear as triangles, 
as indicated in Fig. l(d). The net (a) is the Net 1 

* An asterisk indicates that the net is illustrated later by 
a pair of stereoscopic photographs. 

- , , ._  

(a) (b) (c)* 
Fig. 2. 
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of Figs. 6 and 7 of Part  1 and contains congruent, 
equiangular 10-gons. I t  has only 4 points in the sim- 
plest unit cell and in its most symmetrical configura- 

(a) (b) (~) 
Fig. 3. 

tion has cubic symmetry (see Table 2). When screw 
axes are erected at all points of 63 there are two pos- 
sibilities, the axes being either alternately 31 and 39 
or all 3z (or 3~). In the latter case the net is enantio- 
morphic (Fig. 3(c)). Both of these 83 nets, which are 
Nets 5 and 6 of Figs. 9 and 10 in Part  1, can be realized 
with congruent, equiangular 8-gons. 

which the smallest polygons are 12-gons. However, 
this is not an n 3 net but has the symbol 12 ~. 14; nets 
123 are apparently-not possible. 

The use of the operation 41~. 

This may be combined with any plane net con- 
raining 4-connected points, the simplest possibilities 
being those of Fig. 5(a) and (b). The first is the 103 
net of Fig. 2(a); the second is the 103 net of Fig. 4(b). 

/ s 
"" 1 " /  
3 7 - -  2 

o~ 
2 

o 

/ 
"x 

, /  
/ 3 3  

o 

3 

0 ",  I 
0 ~ I 

/ 2  2 

0 
1 " 2 

U 
3 

/ "  1 

(a) (b) 

4 z axes and the "plane net 44 

The two simplest possibilities are shown in Fig. 4, 
the net (a) being the same as that  of Fig. 3(a). The net 
of Fig. 4(b) is also an assembly of 10-gons, and has 

\ 1~0 / 

(a) (hi* 
Fig. 4. 

been illustrated in Fig. 15 of Part  1. I t  arises by join- 
ing up the equivalent positions 8(e) of the space group 
Pnna.  

6 z axes and the plane net 3 s 

I t  is found impossible to construct nets analogous 
to those of Figs. 3 and 4 by erecting 6x axes at the 
points of the plane net 36 , but 62 axes give the very 
interesting Net 21 of Figs. 4(b) and 13 of Part  1, in 

C C 

(c) 

C" ' , 0  

Fig. 5. 

(d) 

(t) 

0 3 1 3 

3 

(e) 

( 
1 3 

(a)* (b) (c)* (d) 
Fig. 6. 
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I t  is interesting that  in addition to having the very 
similar projections of Fig. 5(a) and (b) these nets also 
project as the same plane net (63 ) along the directions 
of the arrows (Fig. 5(c) and (d)). No new n 3 nets arise 
by combining 41~ with the (3+4)-connected nets of 
Fig. 3(a), (b) and (c) of Part 2 (Wells, 1954b), but the 
plane pentagonal net of Fig. 5(e) gives the rhombo- 
hedral 93 net of Figs. 18 and 19 of Part 1, as shown 
in Fig. 5(/). 

Combinations of 21 with 31, 41 or 61 axes 
In addition to erecting 31, 41 or 61 axes at the points 

of the three regular plane nets we may also add 21 
axes at the mid-points of the links, all the screw axes 
being parallel to one another and perpendicular to the 
plane of the 63, 44, or 3 e net. Since the juxtaposition 
of two parallel screw axes n 1 and m 1 gives minimum 
circuits of n l + m l + 2  we may expect to find nets with 
respectively 7-, 8- and 10-gon circuits. (The case, 
nl = ml = 21, corresponds to the plane hexagonal net, 
with 6-gon circuits.) The simplest possibilities are the 
enantiomorphic nets in which the axes at the points 
of the nets are all 31, all 41 or all 61 (Fig. 6(a), (b), (c)). 
Of these new nets, the first two have congruent 7-gons 
and 8-gons respectively, but the nets cannot be con- 
structed with inter-bond angles of 120 ° . In the 103 
net of Fig. 6(c) the polygons can neither be congruent 
nor have angles of 120 °. In addition to these enantio- 
morphic nets, in which all the screw axes (other than 
21) are either left- or right-handed, there are nets 
corresponding to the first two in which screw axes of 
opposite sense alternate (Fig. 6(d) and (e)). There is 
no net (corresponding to that  of Fig. 6(c)) in which 61 
and 65 alternate, because the polygon in the original 
plane net (36) has an odd number of sides. 

Combinations of 31+41 , 31+61, and 41+61 
The juxtaposition of these axes in parallel orienta- 

tion might be expected to give three-dimensional nets 
with 9-, 11- and 12-gon circuits. Since it is necessary 
that  two similar screw axes should never be adjacent 
(for this combination would give a different polygon) 
the plane nets required are those formed by connecting 
up p- and q-connected points (p and q being two of the 
numbers 3, 4 and 6) so that  each p-connected point 
is connected only to q-connected points, each of the 
latter being connected only to p-connected points. 
The required (3+4)- and (3+6)-eonneeted plane nets 
are shown in Fig. 7(a) and (b) and the projections of the 
three-dimensional nets in Fig. 7@ and (d). There is 
no corresponding (4+6)-connected plane net. (For the 
maximum ratio of links to points in a plane net the 
polygons should clearly have the minimum number of 
sides, as in 63 , built of triangles. To avoid adjacent 

points of the same kind in a mixed (p+q)-connected 
net the polygons must have even numbers of sides, 
so that  the minimum is 4. This is reached in Fig. 7(b), 
with an average of 2 links per point, whence it follows 
that  a (4+6)-connected net of this kind is impossible. 
An interesting corollary is that  a compound A2X 3 in 
which A is to be 6-coordinated and X 4-coordinated 
cannot have a simple layer structure; examples of 
three-dimensional (4+6)-connected nets are the struc- 
tures of 0¢'Al203, MgaP 2 and cubic Mn~03.) 

In Fig. 7(c) it is necessary that  the three- and four- 
fold screw axes are all left- or all right-handed in 
order to avoid 8-gons. In this 9 a net there are non- 
congruent 9-gons, and these polygons cannot have 

< 

< 

< 

(a) (b) 

3O 

f 

2 

4 o 

Y 
(c) * (d)  

Fig. 7. 

angles of 120 ° . When we attempt to build an 113 net 
from (b), as at (d), we find that  it is impossible to 
avoid 9-gons, and the net is not of the n 3 type. Al- 
though the circuit involving 61 and 31 is necessarily 
an l l-gon it is possible to avoid the 61 in the circuit 
marked ~). I t  seems safe to assume that  for a similar 
reason it will be impossible to find a net 123. 
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